

Introduction

Moisture content in cathode feed air is postulated to lead to performance degradation in LSM and LSCF cathodes.

- PNNL: Humidity causes degradation in the performance of LSM/YSZ cathodes. It is more pronounced at lower temperature, partially reversible.
- □ Case Western Reserve Univ.: Abrupt rise in ASR was observed upon 3% steam introduction
- $\hfill Kyushu Univ.:$ Steam decomposes LSM to form Mn_3O_4 on the LSM surface rather than at cathode / electrolyte interface (Liu et al., J Power Sources, 196 (2011) 7090)

Purpose of the Study

- Determine the effects of high steam on cathode performance;
- Identify the underlying mechanisms responsible for cathode degradation;
- Improve long term stability of SOFC by modifying cathode structure (surface composition) based on mechanistic understanding of cathode degradation.

NETL Operating Parameters

Cells:

- Commercially available MSRI anode supported cells
- Cathode: LSM[(La_{0.8}Sr_{0.2})_{0.98}MnO₃] / LSM-YSZ active layer
- Electrolyte: YSZ; Anode: Ni-YSZ
 teem Congration:
- Steam Generation:
- Saturated steam is pressure/temperature controlled and injected through a restrictive flow orifice at choked flow conditions.

Operating Conditions:

- 800°C, 0.75 A/cm² or 0.25 A/cm²
- 10 or 20% steam content / balance air

Steam Content (10 % vs. 20 %) Effect

1.2 0.1 #1 10% 0.1 #2 0.1 2.0 #3 83 29 20% 24.0 4.6 #5 1. No noticeable degradation was observed for

- the cells tested under 10% steam. 2. Cell performance was severely degraded under 20% steam, particularly within 100 h after current loading.
- The observed degradation is analyzed to be related with surface oxygen exchange and/or oxidant gas concentration at cathode.

 The cathode tested under high steam content appears to have (1) more rounded grains, (2) grooved boundary at YSZ/LSM interfaces, and (3) some flake-like particles.
 No evidence of decomposed LSM or Mn-rich

phase was found within the analytical resolution limit.

Operating Current (0.25 A/cm² vs. 0.75 A/cm²) Effect

(A/cm²)

0.75

(A/cm²)

Cell voltage under 10 % steam

0.22

....

1 o.m

11.10

0.8

2	0.25 A/cm2 - 0.25 A/cm2	0.91
r	#1 - 0.25 //m2 - 0.0 //m/	1139
	#2 - 2.0 Mm2	- 118
		0.78
I	#3	0.75
1		0./4
r	45 0.75 A/cm2	877
	0 10 100 110 200 110 200 300 300 400 400 10	- 11 /
	time (h)	

Bode plot (DC = 0.25 A/cm²) Operating current = 0.75 A/cm²

sample	@ 0 - 100 h	@ 100 - 1000 h	
#1	1.2	0.1	
#2	0.1	0.1	
#3	9.9	9.9	
#4	9.6	9.6	
#5	11.7	11.7	
			· · · ·

- 1. No noticeable degradation was observed for the cells tested under 0.25 A/cm2.
- 2. Cells were severely degraded when tested under higher current density (0.75 A/cm2).
- Degradation rates were relatively independent on operation time (linear relationship) over all the test period.
- The degradation under high current density was analyzed to be related with surface oxygen exchange and/or oxidant gas concentration at cathode.

Surface Modification with Mn

Mn-infiltrated

#4

#5

#6

- Long-term operation of the cells #5 and #6 showed initial performance increase followed by 5-8 %/1000 h degradation.
- Both the initial performance improvement and the degradation with operation are related with cathode, based on the EIS analysis.
- 4. Mn infiltrate on LSM/YSZ cathode were coarsened with operation period.

Summary & Conclusion

#2

Bode plot (DC = 0.75 A/cm²)

Uninfiltrated

- Steam content in air matters to cell degradation rate at low current density (0.25 A/cm²): (1)
 Essentially no degradation with 10% steam; and (2) Rapid initial degradation followed by a slower,
 more linear degradation at extended time with 20% steam.
- Current density matters to cell degradation rate at relatively low steam content (10%): Accelerated degradation was observed for the cells tested at the higher current density, 0.75 A/cm².
- Mn was introduced into LSM/YSZ cathode by solution infiltration method to modify surfaces of the composite cathode with the expectation that it prevents Mn deficiency from LSM/YSZ interface and extend effective three-phase boundary (TPB) under high steam condition.
- Mn-infiltrated cells showed performance improvement initially, and maintained lower degradation rates compared to uninfiltrated cells.
- This study demonstrates the effects of steam content and operating current density on cathode degradation rate, and suggests that surface modification by infiltration is a technique to mitigate electrode degradation.

